RECAPTURING H2-FUNCTIONS ON A POLYDISC

RY

D. J. PATIL

ABSTRACT. Let U^2 be the unit polydisc and T^2 its distinguished boundary. If $E \subset T^2$ is a set of positive measure and the restriction to E of a function f in $H^2(U^2)$ is given then an algorithm to recapture f is developed.

Introduction. Let U be the open unit disc in the complex plane and T its boundary. Let f be holomorphic in the unit polydisc $U^2 = U \times U$; then $f(z) = \sum c(n)z^n$, $z = (z_1, z_2) \in U^2$, $n = (n_1, n_2) \in Z_+^2$. The function f is in H^2 if and only if $\sum |c(n)|^2 < \infty$ [2, p. 50]. The functions f in H^2 can be identified with the boundary value functions on the distinguished boundary T^2 (= $T \times T$) of U^2 and these boundary value functions are precisely those $f \in L^2(T^2)$ whose Fourier coefficients $\hat{f}(n_1, n_2)$ are zero if either $n_1 < 0$ or $n_2 < 0$. It is known that if a nonzero f is in H^2 then $\log |f|$ is in $L^1(T^2)$ and hence if f = 0 on a subset E of T^2 of positive measure then f is the zero function. It follows that the restriction to such a set E of a function f in H^2 determines f uniquely. Following the methods in [1], we give a constructive algorithm to recapture the function f from its values on E. The construction is in two steps. From the knowledge of f on f, the first step obtains f on $f \times T$ where f is some subset of f of positive measure. The second step is the 'conjugate' of the first and starting with f on $f \times T$ we recover f on the whole of f is the value of f in the positive of f is the value of f in the positive measure. The

The arrangement of the paper is as follows. After defining the notations, we prove some lemmas leading to Theorem 1 which gives the first step in recapturing f. We then discuss how the second step is a corollary of the first. This is followed by Theorem 2 which makes the algorithm more explicit.

Notations. In the following H^2 will stand for $H^2(T^2)$. By L^2 and L^∞ will be meant $L^2(T^2)$ and $L^\infty(T^2)$ respectively. The subspace L^2_+ (L^∞_+) will consist of those f in L^2 (L^∞) whose Fourier coefficients vanish in the lower half plane, thus, $L^2_+=\{f\in L^2: \widehat{f}(n_1,n_2)=0 \text{ for all } n_2<0\}$. The orthogonal projection of L^2 onto L^2_+ will be denoted by P. The Toeplitz operator T_ϕ corresponding to $\phi\in L^\infty$ is defined by $T_\phi f=P(\phi f), \ f\in L^2_+$. If $f\in L^2_+$, we may consider f as an H^2 -function on T with values in $L^2(T)$: $f(\theta_1,\theta_2)=\sum_{n\geq 0} f_n(\theta_1)e^{in\theta_2}$. The natural

Presented to the Society, January 26, 1973; received by the editors January 5, 1973. AMS (MOS) subject classifications (1970). Primary 30A78, 30A88; Secondary 46E20, 30A86, 47B35.

Copyright © 1974, American Mathematical Society

extension of this f to \overline{U} will also be denoted by f; then for $z_2 \in U$, $f(z_2) = \sum_{n \geq 0} f_n(\theta_1) z_2^n$. Such functions f are holomorphic $L^2(T)$ -valued functions on U and the relation $f(r_2e^{i\theta_2}) \to f(\theta_1, \theta_2)$ as $r_2 \to 1$ holds for a.e. pointwise convergence and also for mean convergence [3, p. 186]. Thus the functions $f(\theta_1, \theta_2)$ and $f(z_2)$ above determine each other. The (normalized) Haar measures on T and T^2 will be denoted by m_1 and m_2 respectively, and when there is no risk of confusion $dm_1(\theta_1)$ will be shortened to $d\theta_1$ etc. For $z \in U$, $\theta \in T$, let $K(z, \theta) = (e^{i\theta} + z)/(e^{i\theta} - z)$ and P = Re K.

Lemma 1. Let $E \subset T^2$, $m_2(E) > 0$. For $\lambda > 0$ and $(z_1, z_2) \in U^2$ define $t_{\lambda}(z_1, z_2) = \exp\left\{\frac{1}{2}\log(1+\lambda)\iint_E P(z_1, \theta_1)K(z_2, \theta_2)\,d\theta_1\,d\theta_2\right\}.$

Then we have the following:

- (a) For all $(z_1, z_2) \in U^2$, $1 \le |t_{\lambda}(z_1, z_2)| \le \sqrt{(1 + \lambda)}$.
- (b) There exists a set $A \subset T$ with $m_1(A) = 1$ such that for every $\theta_1 \in A$ and for every $z_2 \in U$, the limit

$$t_{\lambda}(\theta_1, z_2) = \lim_{r_1 \to 1} t_{\lambda}(r_1 e^{i\theta_1}, z_2)$$

exists and for each $\theta_1 \in A$, the function $t_{\lambda}(\theta_1, \cdot)$ is holomorphic in U.

(c) For each $\theta_1 \in A$, the limit

$$t_{\lambda}(\theta_1, \theta_2) = \lim_{r_2 \to 1} t_{\lambda}(\theta_1, r_2 e^{i\theta_2})$$

exists for almost all θ_2 in T, and hence $t_{\lambda}(\theta_1, \theta_2)$ is defined almost everywhere in T^2 and is in L_{+}^{∞} .

(d) For almost all (θ_1, θ_2) in T^2 ,

$$|t_{\lambda}(\theta_{1}, \theta_{2})|^{2} = 1 + \lambda \chi_{E}(\theta_{1}, \theta_{2}).$$

Proof. (a) holds since $|t_{\lambda}(z_1, z_2)|$ is the exponential of the Poisson integral of $\frac{1}{2} \log(1 + \lambda) \chi_E$.

(b) For $z_2 \in U$ and $\theta_1 \in T$, letting

$$\mathfrak{B}(\theta_1, z_2) = \int_{T} \chi_E(\theta_1, \theta_2) K(z_2, \theta_2) d\theta_2,$$

we see that $|\mathcal{B}(\theta_1, z_2)| \le 2/(1 - |z_2|)$, for all $\theta_1 \in T$ and hence by Fatou's theorem the integral

$$\iint_{E} P(r_{1}e^{i\alpha_{1}}, \theta_{1})K(z_{2}, \theta_{2}) d\theta_{1} d\theta_{2} = \int_{T} P(r_{1}e^{i\alpha_{1}}, \theta_{1})\Re(\theta_{1}z_{2}) d\theta_{1}$$

converges to $\Re(\alpha_1, z_2)$ a.e. (α_1) as $r_1 \to 1$. Therefore

(1)
$$t_{\lambda}(r_1e^{i\theta_1}, z_2) \rightarrow \exp\{\frac{1}{2}\log(1+\lambda)\Re(\theta_1, z_2)\}$$

a.e. (θ_1) . The set of measure 1 where this convergence takes place depends on z_2 . To see that there is a set A of measure 1 such that for all $\theta_1 \in A$ and for all $z_2 \in U$, (1) holds it suffices to observe that for a fixed a_1 , the family $\{F_{r_1}: 0 < r_1 < 1\}$ where

$$F_{r_1}(z_2) = \int_T P(r_1 e^{i\alpha_1}, \theta_1) \Re(\theta_1, z_2) d\theta_1,$$

is equicontinuous on compact subsets of U. A standard argument such as the one in the proof of (5.16) in [5, p. 327] now proves the existence of the set A.

(c) For each $\theta_1 \in A$, $t_{\lambda}(\theta_1, \cdot)$ is a bounded holomorphic function on U and hence by Fatou's theorem $t_{\lambda}(\theta_1, r_2 e^{i\theta_2})$ has a limit-say $t_{\lambda}(\theta_1, \theta_2)$ -as $r_2 \to 1$, a.e. (θ_2) . Since $t_{\lambda}(\theta_1, \theta_2)$ is a repeated limit of continuous functions, its domain Δ is a measurable set in T^2 and since almost every θ_1 -section of Δ has measure 1, we must have that $m_2(\Delta) = 1$.

(d) We have for almost every $(\theta_1, \theta_2) \in T^2$,

$$\begin{split} |t_{\lambda}(\theta_1, \, \theta_2)|^2 &= \lim_{r_2 \to 1} \exp \left\{ \log \left(1 + \lambda \right) \int_{T} \chi_E(\theta_1, \, \alpha_2) P(r_2 e^{i\theta_2}, \, \alpha_2) \, d\alpha_2 \right\} \\ &= \exp \left\{ \log \left(1 + \lambda \right) \chi_E(\theta_1, \, \theta_2) \right\} = 1 + \lambda \chi_E(\theta_1, \, \theta_2). \end{split}$$

Lemma 2. Let $E \subset T^2$, $m_2(E) > 0$. Let S be the Toeplitz operator on L^2_+ corresponding to the characteristic function χ_E of the set E. If t_λ is as in Lemma 1 and $s_\lambda = 1/t_\lambda$, then $(I + \lambda S) = T_{\overline{t_\lambda}} T_{t_\lambda}$, $(I + \lambda S)^{-1} = T_{s_\lambda} T_{\overline{s_\lambda}}$.

Proof. We observe that $s_{\lambda} \in L_{+}^{\infty}$. The rest of the proof is similar to those of Lemmas 1, 2 in [1].

Lemma 3. Let $s(\theta_1, \theta_2) \sim \sum_{n \geq 0} s_n(\theta_1) e^{in\theta_2}$ be in L_+^{∞} and let $s(\theta_1, z_2) = \sum_{n \geq 0} s_n(\theta_1) z_2^n$, $\theta_1 \in T$, $z_2 \in U$. Define for $(\theta_1, \theta_2) \in T^2$ and $z \in U$,

$$e_{z}^{(j)}(\theta_{1}, \theta_{2}) = (1 - \overline{z}e^{i\theta_{j}})^{-1}, \quad j = 1, 2.$$

Then for $z_1, z_2 \in U$, $e_{z_1}^{(1)} e_{z_2}^{(2)}$ is in H^2 (and so in L^2_+) and

$$T_{\overline{s}}(e_{z_1}^{(1)}e_{z_2}^{(2)})(\theta_1,\,\theta_2)=\overline{s}(\theta_1,\,z_2)(e_{z_1}^{(1)}e_{z_2}^{(2)})(\theta_1,\,\theta_2).$$

Proof. The equality follows by checking that the inner products of both sides with $\exp(im_1\theta_1 + im_2\theta_2)$, are the same for every integer m_1 and every nonnegative integer m_2 .

Lemma 4. Let $E \subset T^2$ with $m_2(E) > 0$. Let for each $\theta_1 \in T$, $E(\theta_1) = \{\theta_2 \in T: (\theta_1, \theta_2) \in E\}$ and let, for each $\delta > 0$, $F(\delta) = \{\theta_1 \in T: m_1(E(\theta_1)) > \delta\}$. Then there exist $\delta_1 > 0$, $\delta_2 > 0$ such that $m_1(F(\delta_2)) > \delta_1$.

Proof. Observe that as $n \to \infty$,

$$\int_{F(1/n)} m_1(E(\theta_1)) d\theta_1 \uparrow \int_{T} m_1(E(\theta_1)) d\theta_1 = m_2(E),$$

and hence, if $0 < \delta_1 < m_2(E)$, there exists N such that

$$\delta_1 < \int_{F(1/N)} m_1(E(\theta_1)) d\theta_1 \le m_1(F(1/N)).$$

Now take $\delta_2 = 1/N$.

Theorem 1. Let $E \subset T^2$, $m_2(E) > 0$. Choose δ_1 , δ_2 as in Lemma 4 and denote $F(\delta_2)$ by F. Let M be the operator defined by

$$(Mf)(\theta_1, \theta_2) = \chi_F(\theta_1)f(\theta_1, \theta_2), \qquad f \in L^2_+, \ (\theta_1, \theta_2) \in T^2.$$

Suppose that S is as in Lemma 2. Then for every $f \in H^2$,

$$\lim_{\lambda \to \infty} \lambda M(I + \lambda S)^{-1} S f = M f.$$

Proof. Since $M(I - \lambda(I + \lambda S)^{-1}S) = M(I + \lambda S)^{-1}$, and the set $\{e_{z_1}^{(1)}e_{z_2}^{(2)}: z_1, z_2 \in U\}$ is fundamental in H^2 , the theorem will be proved if the following are verified: (i) $\sup_{\lambda} \|M(I + \lambda S)^{-1}\| < \infty$, and (ii) for all $z_1, z_2 \in U$, $M(I + \lambda S)^{-1}e_{z_1}^{(1)}e_{z_2}^{(2)} \to 0$, as $\lambda \to \infty$.

By Lemma 1(a), $|s_{\lambda}(\theta_1, \theta_2)| \le 1$, a.e. and therefore $||T_{\overline{s}_{\lambda}}|| = ||T_{s_{\lambda}}|| \le ||s_{\lambda}||_{\infty} \le 1$. Also trivially, $||M|| \le 1$ and hence in view of Lemma 2, $||M(I + \lambda S)^{-1}|| = ||MT_{s_{\lambda}}T_{\overline{s}_{\lambda}}|| \le 1$. This proves (i).

To check (ii), note that for $\theta_1 \in F$, using the notation in the proof of Lemma 1(b),

Re
$$\mathcal{B}(\theta_1, z_2) = \int_{E(\theta_1)} P(z_2, \theta_2) d\theta_2 \ge \frac{1 - |z_2|}{1 + |z_2|} \delta_2$$

and hence for almost all $\theta_1 \in F$,

$$|s_{\lambda}(\theta_1, z_2)| \leq (1 + \lambda)^{-p}, \quad z_2 \in U$$

where $p = \delta_2(1 - |z_2|)/2(1 + |z_2|) > 0$. Now using Lemma 3, we have

$$\mathit{M}(I+\lambda S)^{-1}(e_{z_1}^{(1)}e_{z_2}^{(2)})(\theta_1,\,\theta_2) = \chi_F(\theta_1)s_{\pmb{\lambda}}(\theta_1,\,\theta_2)\overline{s}_{\pmb{\lambda}}(\theta_1,\,z_2)(e_{z_1}^{(1)}e_{z_2}^{(2)})(\theta_1,\,\theta_2),$$

and hence

$$\|M(I + \lambda S)^{-1}(e_{z_1}^{(1)}e_{z_2}^{(2)})\|_2 \le (1 + \lambda)^{-p}\|e_{z_1}^{(1)}e_{z_2}^{(2)}\|_2.$$

This last expression tends to zero as $\lambda \to \infty$ and (ii) is verified.

Discussion. The limit relation $\lambda M(I+\lambda S)^{-1}Sf\to Mf$ of Theorem 1 provides the first step in recapturing f from its values on E. The knowledge of f on E yields Sf and $(I+\lambda S)^{-1}$ is obtained in terms of s_{λ} which depends only on the set E. Thus $\lambda M(I+\lambda S)^{-1}Sf$ can be computed and the limit as $\lambda\to\infty$ gives Mf, i.e. values of f on $F\times T$. The second step of going from $F\times T$ to $T\times T$ now follows easily. We proceed basically as in the first step, but we interchange the roles of the θ_1 - and θ_2 -coordinates and employ the appropriate substitute for L^2_+ . The original set E is now replaced by $E'=F\times T$. Recalling the relationship that F bears to E (Lemma 4), we see that the set F' which corresponds in a similar way (but with θ_1 , θ_2 interchanged) to E' can be chosen to be T itself! Thus a theorem such as Theorem 1 with suitable changes will lead us to f on $T\times F'=T\times T$. This is the sought-for second step, and the algorithm for recapturing f is complete.

The above algorithm recaptures the boundary values of f from its values on E. It is sometimes convenient to have a formula which gives the values of f inside U^2 directly. In the following theorem such a formula is obtained.

Theorem 2. Let the bypotheses and the notations be as in Theorem 1. (a) If for $\lambda > 0$ and $z_1, z_2 \in U$,

$$f_{\lambda}(z_1, z_2) = \frac{\lambda}{(2\pi i)^2} \iint_E \frac{f(w_1, w_2)\overline{s}_{\lambda}(w_1, w_2)s_{\lambda}(w_1, z_2)\chi_F(w_1)}{(w_1 - z_1)(w_2 - z_2)} dw_1 dw_2,$$

then as $\lambda \to \infty$, f_{λ} converges in H^2 to some ϕ and a fortiori uniformly on compact subsets of U^2 .

(b) If for $\lambda > 0$ and $z_1 \in U$,

$$b_{\lambda}(z_1) = \exp \left\{ -\frac{1}{2} \log (1 + \lambda) \int_F K(z_1, \theta_1) d\theta_1 \right\},$$

and ϕ is as in (a) above then for each $(z_1, z_2) \in U^2$,

$$f(z_1, z_2) = \lim_{\lambda \to \infty} \lim_{r \to 1} \frac{\lambda}{2\pi i} b_{\lambda}(z_1) \int_{c_r} \frac{\phi(w_1, z_2) \overline{b_{\lambda}}(w_1) dw_1}{w_1 - z_1},$$

where c_r is the circle $|w_1| = r$ and $|z_1| < r < 1$.

Proof. (a) By Theorem 1, we have that as $\lambda \to \infty$, $\lambda M(I + \lambda S)^{-1} S f \to M f$. Taking the inner product with $e_{z_1}^{(1)} e_{z_2}^{(2)}$, z_1 , $z_2 \in U$, we get

(2)
$$\lambda(M(I+\lambda S)^{-1}Sf, e_{z_1}^{(1)}e_{z_2}^{(2)}) \to (Mf, e_{z_1}^{(1)}e_{z_2}^{(2)}).$$

We will prove that the first member of (2) equals $f_{\lambda}(z_1, z_2)$ and hence if the second member of (2) is denoted by $\phi(z_1, z_2)$ the proof of (a) will be complete.

Since M is the multiplication by $\chi_F(\theta_1)$, a function of θ_1 only, M commutes with S and therefore with $(I + \lambda S)^{-1}$. Thus

$$(M(I + \lambda S)^{-1}Sf, \ e_{x_1}^{(1)}e_{x_2}^{(2)}) = (SMf, \ (I + \lambda S)^{-1}e_{x_1}^{(1)}e_{x_2}^{(2)}) = (Mf, \ (I + \lambda S)^{-1}e_{x_1}^{(1)}e_{x_2}^{(2)})_E.$$

Using Lemmas 2 and 3 to write the expressions for $(I + \lambda S)^{-1} e_{z_1}^{(1)} e_{z_2}^{(2)}$, we see that the left member of (2) is in fact $f_{\lambda}(z_1, z_2)$.

(b) From the proof in (a), we see that $\phi(z_1, z_2) = (M/, e_{z_1}^{(1)} e_{z_2}^{(2)})$ and hence

$$\phi(z_1, z_2) = \frac{1}{(2\pi i)^2} \iint_{F \times T} \frac{f(w_1, w_2)}{(w_1 - z_1)(w_2 - z_2)} dw_1 dw_2.$$

Let us now define L^2 to be the subspace $\{f \in L^2 : \widehat{f}(m, n) = 0 \text{ for all } m < 0\}$, \widehat{P} the orthogonal projection of L^2 onto L^2 , \widehat{S} the Toeplitz operator on L^2 corresponding to the function $\chi_{E'}$, where $E' = F \times T$, i.e. $\widehat{S}(f) = \widehat{P}(\chi_{E'}f)$, $f \in L^2$, and σ_{λ} , h_{λ} to be

$$\begin{split} \sigma_{\lambda}(z_{1}, z_{2}) &= \exp\left\{-\frac{1}{2}\log(1+\lambda)\iint_{E} K(\theta_{1}, z_{1})P(\theta_{2}, z_{2})d\theta_{1}d\theta_{2}\right\}, \\ b_{\lambda}(z_{1}) &= \exp\left\{-\frac{1}{2}\log(1+\lambda)\int_{F} K(\theta_{1}, z_{1})d\theta_{1}\right\}, \end{split}$$

where $\lambda > 0$ and $z_1, z_2 \in U$. Then for all $z_1, z_2 \in U$, $\sigma_{\lambda}(z_1, z_2) = b_{\lambda}(z_1)$ and as in Theorem 1 we will get, for every $f \in H^2$, $\lambda \widetilde{M}(I + \lambda \widetilde{S})^{-1} \widetilde{S} f \to \widetilde{M} f$ $(\lambda \to \infty)$, where \widetilde{M} is the multiplication by $\chi_{F'}(\theta_2)$, F' corresponding to E' according to Lemma 4 but with roles of θ_1 , θ_2 reversed. However, since $E' = F \times T$, we can take F' = T and so for $f \in H^2$, $\lambda(I + \lambda \widetilde{S})^{-1} \widetilde{S} f \to f$. If, in this last relation, we take the inner product with $e_{z_1}^{(1)} e_{z_2}^{(2)}$, then as $\lambda \to \infty$,

(3)
$$(\lambda(I + \lambda S)^{-1}S_{f}, e_{z_{1}}^{(1)}e_{z_{2}}^{(2)}) \rightarrow (f, e_{z_{1}}^{(1)}e_{z_{2}}^{(2)}) = f(z_{1}, z_{2}).$$

Now noting that $P(\chi_{E'}f) = \phi$, we see that

$$\begin{split} ((I+\lambda\widetilde{S})^{-1}\widetilde{S}f, \ e_{z_1}^{(1)}e_{z_2}^{(2)}) &= (\widetilde{S}f, \ (I+\lambda\widetilde{S})^{-1}e_{z_1}^{(1)}e_{z_2}^{(2)}) \\ &= (\phi, b_{\lambda}e_{z_1}^{(1)}e_{z_2}^{(2)})b_{\lambda}(z_1). \end{split}$$

In the last step we used results similar to Lemmas 2 and 3 for $(I + \lambda \hat{S})^{-1}$. From (3) it now follows that as $\lambda \to \infty$,

$$\lambda(\phi, b_{\lambda}e_{z_{1}}^{(1)}e_{z_{2}}^{(2)})b_{\lambda}(z_{1}) \rightarrow f(z_{1}, z_{2}).$$

It is easy to see that $(\phi, b_{\lambda}e_{z_1}^{(1)}e_{z_2}^{(2)})$ equals the inner product in $H^2(U^1)$ of $\phi(\cdot, z_2)$ with $b_{\lambda}e_{z_1}^{(1)}$. The proof is finished by observing that if $u, v \in H^2(U^1)$ and $u_r(e^{i\theta}) = u(re^{i\theta})$ and v_r is similarly defined then the product $(u, v e_z^{(1)})$ is the limit as $r \to 1$ of

$$\frac{1}{2\pi i} \int_{C_r} \frac{u(w)\overline{v}(w)}{w-z} dw.$$

Remarks. (1) An alternative proof of a part of the one-variable theorem (Theorem I of [1] as regards the convergence on compact sets) has been suggested by Wainger (see Appendix B of [4]). This proof depends on the following statement which is true if n = 1: To each nonnegative function $\psi \in L^{\infty}(T^n)$ there is $f \in H^{\infty}(U^n)$ such that $|f| = \psi$ a.e. The statement is false for n > 1 [2, p. 54ff]. Moreover for n > 1 even when such a function f exists an explicit formula for f does not seem to be known. It would thus appear that a proof on the lines suggested by Wainger is not possible for n > 1 and that recourse to the techniques such as the ones used in the present work is necessary.

(2) The Theorem 1 above can easily be generalized to functions in $H^2(T^n)$ with n > 2. The algorithm to recapture the function takes n steps and the generalization does not need any new ideas.

REFERENCES

- D. J. Patil, Representation of H^b-functions, Bull. Amer. Math. Soc. 78 (1972), 617-620. MR 45 #7069.
- 2. W. Rudin, Function theory in polydiscs, Benjamin, New York, 1969. MR 41 #501.
- 3. B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on Hilbert space, North-Holland, Amsterdam, 1970.
- 4. L. C. Young, Some new stochastic integrals and Stieltjes integrals. II, Advances in Probability and Related Topics (to appear).
- 5. A. Zygmund, Trigonometric series. Vol. II, Cambridge Univ. Press, Cambridge, Mass., 1959. MR 21 #6498.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN-MILWAUKEE, MILWAUKEE, WISCONSIN 53201